Chapter 6

Linear Regression

Given a data set D = {(x;,y;) }.—, the objective is to learn the relationship between features
and the target. We usually start by hypothesizing the functional form of this relationship.
For example,

f(x) = wo + wiz1 + wazs

where w = (wp, w1, w2) is a set of parameters that need to be determined (learned) and
x = (1, x2). Alternatively, we may hypothesize that f(x) = a+ fx1x2, where 8 = (o, 3) is
another set of parameters to be learned. In the former case, the target function is modeled
as a linear combination of features and parameters; i.e.,

d
f(w) = Z W;5Tj,
J=0

where we extended x to (zg = 1,21,%2,...,24). Finding the best parameters w is then
referred to as linear regression problem, whereas all other types of relationship between the
features and the target fall into a category of non-linear regression. In either situation,
the regression problem can be presented as a probabilistic modeling approach that reduces
to parameter estimation; i.e., to an optimization problem with the goal of maximizing
or minimizing some performance criterion between target values {y;};"; and predictions
{f(x;)};—,. We can think of a particular optimization algorithm as the learning or training
algorithm.

6.1 Maximum likelihood formulation

We now consider a statistical formulation of linear regression. We shall first lay out the
assumptions behind this process and subsequently formulate the problem through maxi-
mization of the conditional likelihood function. In following section, we will show how to
solve the optimization and analyze the solution and its basic statistical properties.

Let us assume that the observed data set D is a product of a data generating process in
which n data points were drawn independently and according to the same distribution p(x).
Assume also that the target variable Y has an underlying linear relationship with features
X = (X1, Xs,...,Xy), modified by some error term ¢ that follows a zero-mean Gaussian
distribution; i.e., ¢ : N'(0,0?). That is, for a given input x, the target y is a realization of
a random variable Y defined as

d
Y = ijXj +e,
j=0
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where w = (wp,w1,...,wq) is a set of unknown coefficients we seek to recover through
estimation. Generally, the assumption of normality for the error term is reasonable (recall
the central limit theorem!), although the independence between ¢ and X may not hold in
practice. Using a few simple properties of expectations, we can see that Y also follows
a Gaussian distribution; i.e., its conditional density is p(y|z,w) = N (u,0?), where u is
expressed in an algebraic notation as w'x.

In linear regression, we seek to approximate the target as f(x) = w'x, where weights
w are to be determined. We first write the conditional likelihood function for a single pair

(z,y) as
(y - wﬁj)2

202

p(y|z, w) = exp | —

2o
where we use the notation exp(a) = e?, to make the exponent easier to read. Observe that
the only change from the conditional density function of Y is that coefficients w are used
instead of w. Incorporating the entire data set D = {(w;,y;)};—;, we can now write the
conditional likelihood function as p(y|X, w), where X is the data matrix, and find weights
as

wy, = arg max {p(y|X,w)}.
A%

Since the n examples are independent and identically distributed (i.i.d.), we have

n

p(ylX,w) = Hp(yz-IXi,W)

exXp | —
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For the reasons of mathematical convenience, we will look at the logarithm (monotonic
function) of the likelihood function and express the log-likelihood as

2

n 1 n d
In(p(y|X,w)) = = log (W) ~ 552 S{wi = wjmy
1=1 i=1 =0

Given that the first term on the right-hand hand side is independent of w, maximizing the
likelihood function corresponds exactly to minimizing the sum of squared errors

-

.
Il
—

d
Err(w) = (f(x;) — yi)2 > f(xi) = Z WjTij
=0

I
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Geometrically, this error is the square of the Euclidean distance between the vector of
predictions g = (f(x1), f(x2),..., f(x,)) and the vector of observed target values y =
(y1,%2,---,Yn). A simple example illustrating the linear regression problem is shown in
Figure 6.1.
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Figure 6.1:  An example of a linear regression fitting on data set D =

{(1,1.2),(2,2.3),(3,2.3),(4,3.3)}. The task of the optimization process is to find the best
linear function f(x) = wy + wix so that the sum of squared errors e + e3 + €3 + €3 is
manimized.

To more explicitly see why the maximum likelihood solution corresponds to minimizing
Err(w), notice that maximizing the likelihood is equivalent to maximizing the log-likelihood
(because log is monotonic) which is equivalent to minimizing the negative log-likelihood.
Therefore, the maximum likelihood wy, corresponds to

wy, = argmin — In(p(y|X, w))

weRd
2
n 1 n d
— argminz log (v 27702> + 557 Z Yi — Z Wi
weRd ;0] S| =0
n d 2
= argminz Yi — Z W; T
weRd 1 §=0
= argmin Err(w)
weRd

In the next sections, we will discuss how to solve this optimization and the properties of
the solution.

Note that we could have simply started with some (expert-defined) error function, as
was originally done for OLS and using Err(w). However, the statistical framework provides
insights into the assumptions behind OLS regression. In particular, the assumptions include
that the data D was drawn i.i.d.; there is an underlying linear relationship between features
and the target; that the noise (error term) is zero-mean Gaussian and independent of the
features; and that there is an absence of noise in the collection of features.
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6.2 Ordinary Least-Squares (OLS) Regression

To minimize the sum of squared errors, we shall first re-write Err(w) as

Err(w) = Z (f(xi) — yi)2

=1
n d 2
= Z Z W;iTij; — Yi s
i=1 \j=0

where, again, we expanded each data point x; by z;0 = 1 to simplify the expression.

We now calculate the gradient VErr(w). Finding weights for which VErr(w) = 0 will
result in a stationary point. To ensure that this stationary point is a global minimum, we
need a bit more information. We can look at the second derivative; this requires under-
standing of Hessian, so we include this later in the notes in Example 8. But, fortunately,
it is even simpler here, since we know that this objective is convex in w; therefore, any
stationary point will be a global minimum.

Now, we set the partial derivatives to 0 and solve the equations for each weight w;

OErr n (&

=23 (D wjzi —yi | wio =0
dwo i=1 \j=0
OErr " [E

=23 (D wjzi—yi | xa =0
Owr i=1 \j=0

OErr L d
3 :22 ijxz‘j—yi i =0
Wd i=1 \j=0

This results in a system of d + 1 linear equations with d + 1 unknowns that can be routinely
solved (e.g. by using Gaussian elimination).

While this formulation is useful, it does not allow us to obtain a closed-form solution
for w or discuss the existence or multiplicity of solutions. To address the first point we will
exercise some matrix calculus, while the remaining points will be discussed later. We will
first write the sum of square errors using the matrix notation as

Err(w) = (Xw—y)' (Xw—y)
= [Xw —yl3,

where [[v]|, = Vv'v = \/v% +v3 +...0v2 is the length of vector v; it is also called the ¢y
norm. We can now formalize the ordinary least-squares (OLS) linear regression problem as

Wy, = arg min || Xw — y||§ .
w
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We proceed by finding VErr(w). The gradient function VErr(w) is a derivative of a scalar
with respect to a vector. However, the intermediate steps of calculating the gradient require
derivatives of vectors with respect to vectors (some of the rules of such derivatives are shown
in Table A.1). Application of the rules from Table A.1 results in

VErr(w) = 2X'Xw — 2X "y
and, therefore, from VErr(w) = 0 we find that
war = (X'X) "X y. (6.1)

We can now express the predicted target values as

The matrix X(X'X)'X" is called the projection matriz; we will see later that it projects
y to the column space of X.

Example 14: Consider again data set D = {(1,1.2),(2,2.3),(3,2.3), (4, 3.3)} from Figure
6.1. We want to find the optimal coefficients of the least-squares fit for f(z) = wp + wix
and then calculate the sum of squared errors on D after the fit.

The OLS fitting can now be performed using

11 1.2

|12 w:[wo y— 2.3
1 3| wy |’ 23 |’
1 4 3.3

where a column of ones was added to x to allow for a non-zero intercept (y = wy when
x = 0). Substituting x and y into Eq. (6.1) results in w = (0.7,0.63) and the sum of square
errors is Err(w) = 0.223. O

As seen in the example above, it is a standard practice to add a column of ones to
the data matrix x in order to ensure that the fitted line, or generally a hyperplane, does
not have to pass through the origin of the coordinate system. This effect, however, can be
achieved in other ways. Consider the first component of the gradient vector

OErr n (&
=23 ( ijij—yz‘) zi0 =0
7=0

dwo i=1

where, because x;0 = 1 by definition, we obtain that

0= i (Ed: WjTij — yz> = 2”: (wo + zd:wjfbij - yz)

i=1 \j=0 i=1 j=1
giving
n n d n
D IED T 9
i=1 i=1 j=1 =1
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When all features (columns of X)) are normalized to have zero mean, i.e. when ;" ;5 =0
for any column j, it follows that

1 n
wy = — E ;.
0 ni:1yz

We see now that if the target variable is normalized to the zero mean as well, it follows that
wg = 0 and that the column of ones is not needed.

6.2.1 Weighted error function

In some applications it is useful to consider minimizing the weighted error function
n d 2
Err(w) = Zci ijmij Y|
i=1 j=0

where ¢; > 0 is a cost for data point i. Expressing this in a matrix form, the goal is to
minimize (Xw — y)T C (Xw —y), where C = diag (¢1, ¢, . .., ¢,). Using a similar approach
as above, it can be shown that the weighted least-squares solution w¢ can be expressed as

-1
W = <XTCX) X' Cy.
In addition, it can be derived that
-1
we = wi + (X'CX) X (I-C) Xwaw —y),

where wy;, is provided by Eq. (6.1). We can see that the solutions are identical when
C =1, but also when Xw,;;, =y.
6.2.2 Predicting multiple outputs simultaneously

The extension to multiple outputs is straightforward, where now the target is an m-
dimensional vector, y € R™, rather than a scalar, giving target matrix Y € R™*™. Corre-
spondingly, the weights W € R to give W 'x € R™, with error

n
Err(W) = |XW - Y7 =Y X, W - Y3 > Frobenius norm
=1
= trace ((XW - Y)"(XW - Y))

and solution
Wy = (X'X)'X'Y.

Exercise: Derive this solution, by taking partial derivatives or, preferably, by using gradient
rules for matrix variables. A good resource for matrix gradients is the matrix cookbook
[15].
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6.3 An Algebraic Perspective

Another powerful tool for analyzing and understanding linear regression comes from linear
and applied linear algebra. In this section we take a detour to address fundamentals of
linear algebra and then apply these concepts to deepen our understanding of regression. In
linear algebra, we are frequently interested in solving the following set of equations, given
below in a matrix form

Ax =b. (6.2)

Here, A is an m x n matrix, b is an m x 1 vector, and x is an n x 1 vector that is to be
found. All elements of A, x, and b are considered to be real numbers. We shall start with
a simple scenario and assume A is a square, 2 X 2 matrix. This set of equations can be
expressed as

a1171 + ajaxs = by

a171 + agawy = by
For example, we may be interested in solving

1+ 229 =3
1+ 3x2 =5

This is a convenient formulation when we want to solve the system, e.g. by Gaussian
elimination. However, it is not a suitable formulation to understand the question of the
existence of solutions. In order for us to do this, we briefly review the basic concepts in
linear algebra.

6.3.1 The four fundamental subspaces

The objective of this section it to briefly review the four fundamental subspaces in linear
algebra (column space, row space, nullspace, left nullspace) and their mutual relationship.
We shall start with our example from above and write the system of linear equations as

HMHEE

We can see now that by solving Ax = b we are looking for the right amounts of vectors
(1,1) and (2, 3) so that their linear combination produces (3,5); these amounts are z; = —1
and xo = 2. Let us define a; = (1,1) and az = (2,3) to be the column vectors of A;
i.e. A = [a; ag]. Thus, Ax = b will be solvable whenever b can be expressed as a linear
combination of the column vectors a; and as.

All linear combinations of the columns of matrix A constitute the column space of A,
C(A), with vectors aj ...a, being a basis of this space. Both b and C(A) lie in the m-
dimensional space R™. Therefore, what Ax = b is saying is that b must lie in the column
space of A for the equation to have solutions. In the example above, if columns of A are
linearly independent®, the solution is unique, i.e. there exists only one linear combination

T+

!As a reminder, two vectors are independent if their linear combination is zero only when both z; and
Zo are zero.
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of the column vectors that will give b. Otherwise, because A is a square matrix, the system
has no solutions. An example of such a situation is

alln]=E)

where a; = (1,1) and ag = (2,2). Here, a; and ay are (linearly) dependent because
2a; —ag = 0. There is a deep connection between the spaces generated by a set of vectors
and the properties of the matrix A. For now, using the example above, it suffices to say
that if a; and ag are independent the matrix A is non-singular (singularity can be discussed
only for square matrices), that is of full rank.

In an equivalent manner to the column space, all linear combinations of the rows of
A constitute the row space, denoted by C'(AT), where both x and C(AT) are in R™. All
solutions to Ax = 0 constitute the nullspace of the matrix, N(A), while all solutions of
ATy = 0 constitute the so-called left nullspace of A, N(AT). Clearly, C(A) and N(AT)
are embedded in R™, whereas C(AT) and N(A) are in R”. However, the pairs of subspaces
are orthogonal (vectors u and v are orthogonal if u'v = 0); that is, any vector in C'(A) is
orthogonal to all vectors from N(AT) and any vector in C(A ") is orthogonal to all vectors
from N(A). This is easy to see: if x € N(A), then by definition Ax = 0, and thus each row
of A is orthogonal to x. If each row is orthogonal to x, then so are all linear combinations
of rows.

Orthogonality is a key property of the four subspaces, as it provides useful decomposition
of vectors x and b from Eq. (6.2) with respect to A (we will exploit this in the next Section).
For example, any x € R" can be decomposed as

X = Xy + Xp,

where x, € C(AT) and x,, € N(A), such that Hx||§ = HXTH§ + HXan Similarly, every
b € R™ can be decomposed as

b = b, + by,

where b. € C(A), by € N(AT), and ||b|j3 = ||bell5 + ||bi]l3.

We mentioned above that the properties of fundamental spaces are tightly connected
with the properties of matrix A. To conclude this section, let us briefly discuss the rank
of a matrix and its relationship with the dimensions of the fundamental subspaces. The
basis of the space is the smallest set of vectors that span the space (this set of vectors is not
unique). The size of the basis is also called the dimension of the space. In the example at
the beginning of this subsection, we had a two dimensional column space with basis vectors
a; = (1,1) and az = (2,3). On the other hand, for a; = (1,1) and as = (2,2) we had
a one dimensional column space, i.e. a line, fully determined by any of the basis vectors.
Unsurprisingly, the dimension of the space spanned by column vectors equals the rank of
matrix A. One of the fundamental results in linear algebra is that the rank of A is identical
to the dimension of C(A), which in turn is identical to the dimension of C'(A ).

6.3.2 Minimizing ||[Ax — b||3

Let us now look again at the solutions to Ax = b. In general, there are three different
outcomes:

89



Figure 6.2: Illustration of the projection of vector b to the column space of matriz A.
Vectors p (b.) and e (b;) represent the projection point and the error, respectively.

1. there are no solutions to the system
2. there is a unique solution to the system, and
3. there are infinitely many solutions.

These outcomes depend on the relationship between the rank (r) of A and dimensions m
and n. We already know that when r = m = n (square, invertible, full rank matrix A)
there is a unique solution to the system, but let us investigate other situations. Generally,
when r = n < m (full column rank), the system has either one solution or no solutions, as
we will see momentarily. When » = m < n (full row rank), the system has infinitely many
solutions. Finally, in cases when » < m and r < n, there are either no solutions or there
are infinitely many solutions. Because Ax = b may not be solvable, we generalize solving
Ax = b to minimizing ||Ax — bl|,. In such a way, all situations can be considered in a
unified framework.
Let us consider the following example

=

1 2 b
A= 3 ,x:[?],b: 2 |,
4 2 bs

which illustrates an instance where we are unlikely to have a solution to Ax = b, unless
there is some constraint on by, bo, and bs; here, the constraint is b3 = 2by — b;. In this
situation, C'(A) is a 2D plane in R? spanned by the column vectors a; = (1,1,1) and
as = (2,3,4). If the constraint on the elements of b is not satisfied, our goal is to try to
find a point in C(A) that is closest to b. This happens to be the point where b is projected
to C'(A), as shown in Figure 6.2. We will refer to the projection of b to C(A) as p. Now,
using the standard algebraic notation, we have the following equations

b=p+e

p = Ax

Since p and e are orthogonal, we know that p'e = 0. Let us now solve for x
(Ax)"(b—Ax)=0
x"ATb-x"ATAx =0
x" (ATb— ATAx) =0
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and thus
x* = (ATA>_1 ATh.

This is exactly the same solution as one that minimized the sum of squared errors and
maximized the likelihood. The matrix

Al = (ATA)J AT

is called the Moore-Penrose pseudo-inverse or simply a pseudo-inverse. This is an important
matrix because it always exists and is unique, even in situations when the inverse of AT A
does not exist. This happens when A has dependent columns (technically, A and ATA will
have the same nullspace that contains more than just the origin of the coordinate system;
thus the rank of AT A is less than n). Let us for a moment look at the projection vector p.
We have

p=Ax
N (ATA>71 ATb,

where A (ATA) 1 AT is the matrix that projects b to the column space of A.

While we arrived at the same result as in previous sections, the tools of linear algebra
allow us to discuss OLS regression at a deeper level. Let us examine for a moment the
existence and multiplicity of solutions to

argmin ||Ax — b||, . (6.3)

Clearly, the solution to this problem always exists. However, we shall now see that the
solution to this problem is generally not unique and that it depends on the rank of A.
Consider x to be one solution to Eq. (6.3). Recall that x = x, +x,, and that it is multiplied
by Aj; thus, any vector x = x, + ax,, where a € R, is also a solution. Observe that x,
is common to all such solutions; if you cannot see it, assume there exists another vector
from the row space and show that it is not possible. If the columns of A are independent,
the solution is unique because the nullspace contains only the origin. Otherwise, there are
infinitely many solutions. In such cases, what exactly is the solution found by projecting b
to C(A)? Let us look at it:

x* = A'b
= (ATA) - AT(p+e)
_ (ATA)_l ATp
—x,,

as p = Ax,. Given that x, is unique, the solution found by the least squares optimization is
the one that simultaneously minimizes ||Ax — b||, and ||x||, (observe that ||x||, is minimized
because the solution ignores any component from the nullspace). Thus, the OLS regression
problem is sometimes referred to as the minimum-norm least-squares problem.
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Let us now consider situations where Ax = b has infinitely many solutions; i.e., when
b € C(A). This usually arises when r < m < n. Here, because b is already in the column
space of A, the only question is what particular solution x will be found by the minimization
procedure. As we have seen above, the outcome of the minimization process is the solution
with the minimum Ly norm ||x||,.

To summarize, let us first get back to our original notation where X is the matrix and
w are the weights to be found. The goal of the OLS regression problem is to solve Xw =y,
if it is solvable. When d < n this is not a realistic scenario in practice. Thus, we relaxed
the requirement and tried to find the point in the column space C(X) that is closest to
y. This turned out to be equivalent to minimizing the sum of square errors (or Euclidean
distance) between n-dimensional vectors Xw and y. It also turned out to be equivalent to
the maximum likelihood solution presented in Section 6.1. When n < d, a usual situation
in practice is that there are infinitely many solutions. In these situations, our optimization
algorithm will find the one with the minimum Lo norm.

6.4 Linear regression for non-linear problems

At first, it might seem that the applicability of linear regression to real-life problems is
greatly limited. After all, it is not clear whether it is realistic (most of the time) to assume
that the target variable is a linear combination of features. Fortunately, the applicability
of linear regression is broader because we can use it to obtain non-linear functions. The
main idea is to apply a non-linear transformation to the data matrix X prior to the fitting
step, which then enables a non-linear fit. Obtaining such a useful feature representation is
a central problem in machine learning; we will discuss this in detail in Chapter 9. Here,
we will first examine a simpler expanded representation that enables non-linear learning:
polynomial curve fitting.

6.4.1 Polynomial curve fitting

We start with one-dimensional data. In OLS regression, we would look for the fit in the
following form

f($) = wo + w1z,

where x is the data point and w = (wq, w1 ) is the weight vector. To achieve a polynomial
fit of degree p, we will modify the previous expression into

p
flx) = wja?,
=0

where p is the degree of the polynomial. We will rewrite this expression using a set of basis
functions as

flx) = wi¢;(x)
i=0

T
=w 9,
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Figure 6.3: Transformation of an n x 1 data matriz x into an n X (p + 1) matriz ® using
a set of basis functions ¢;, j =0,1,...,p .

where ¢;(z) = 27 and ¢ = (¢o(z), ¢1(),. .., ¢p(x)). Applying this transformation to every
data point in x results in a new data matrix ®, as shown in Figure 6.3.
Following the discussion from Section 6.2, the optimal set of weights is calculated as

Wy, = (qﬂb)*l 'y

Example 15: In Figure 6.1 we presented an example of a data set with four data points.
What we did not mention was that, given a set {x1, z2,z3, 24}, the targets were generated
by using function 1 + Z and then adding a measurement error e = (—0.3,0.3,-0.2,0.3). It
turned out that the optimal coefficients wyy, = (0.7,0.63) were close to the true coefficients
w = (1,0.5), even though the error terms were relatively significant. We will now attempt
to estimate the coefficients of a polynomial fit with degrees p = 2 and p = 3. We will
also calculate the sum of squared errors on D after the fit as well as on a large discrete set
of values =z € {0,0.1,0.2,...,10} where the target values will be generated using the true
function 1 + 3.

Using a polynomial fit with degrees p = 2 and p = 3 results in wy = (0.575,0.755, —0.025)
and ws = (—3.1,6.6,—2.65,0.35), respectively. The sum of squared errors on D equals
Err(wg) = 0.221 and Err(ws) ~ 0. Thus, the best fit is achieved with the cubic poly-
nomial. However, the sum of squared errors on the outside data set reveal a poor gen-
eralization ability of the cubic model because we obtain Err(w) = 26.9, Err(wy) = 3.9,
and Err(ws) = 22018.5. This effect is called overfitting. Broadly speaking, overfitting is
indicated by a significant difference in fit between the data set on which the model was
trained and the outside data set on which the model is expected to be applied (Figure 6.4).
In this case, the overfitting occurred because the complexity of the model was increased
considerably, whereas the size of the data set remained small.

One signature of overfitting is an increase in the magnitude of the coefficients. For
example, while the absolute values of all coefficients in w and ws were less than one, the
values of the coefficients in w3 became significantly larger with alternating signs (suggesting
overcompensation). We will discuss reqularization in Section 6.5.2 as an approach to prevent
this effect. O

Polynomial curve fitting is only one way of non-linear fitting because the choice of basis
functions need not be limited to powers of . Among others, non-linear basis functions that
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Figure 6.4: Example of a linear vs. polynomial fit on a data set shown in Figure 6.1. The
linear fit, fi(x), is shown as a solid green line, whereas the cubic polynomial fit, f3(x), is
shown as a solid blue line. The dotted red line indicates the target linear concept.

are commonly used are the sigmoid function

¢j(x) = =
1+e %
or a Gaussian-style exponential function
_(@uy)?

(%(1‘) =e€ 2072 ’

where p;, s, and o; are constants to be determined. However, this approach works only for
a one-dimensional input x. For higher dimensions, this approach can be generalized using
radial basis functions; see Section 9.1 for more details.

6.5 Stability and the bias-variance trade-off

The OLS solution can be unstable. In this section, we show why this is the case, and
discuss how regularization can be used to mitigate this problem. We will then discuss a
foundational concept in machine learning: the bias-variance trade-off.

6.5.1 Sensitivity of the OLS solution

The OLS solution is unstable if X" X is not invertible. This can occur for two main reasons:
linearly dependent features and small datasets. Data sets often include large numbers of
features, which are sometimes identical, similar, or nearly linearly dependent. If the dataset
is small, it is feasible that some features are the same across samples, again resulting in
low-rank X. When XX is not invertible—or ill-conditioned—the OLS solution is highly
sensitive to small perturbations in y and X.

To see why, we will look at the singular value decomposition of X. As with the previous
linear algebra constructs, it allows us to easily examine properties of X. Let’s consider the
common case, where n > d: the number of samples is greater than the input dimension.
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The singular value decomposition of X = UXV" for orthonormal matrices? U € R"*", V €

R?*? and non-negative (rectangular) diagonal matrix 3 € R™*?. The diagonal entries in 3
are the singular values, which we typically order in descending order o1, 09,...,04, giving
[c1 0 O 0 7
0 oo O 0
01 0 e 0
oy ... 0
X=1[0 0 0 o | = ﬁ;’} where 34 =
0 0 0 0
0 O o4
(n —d) rows of zeros
L0 0 ... 0 0 |

Any matrix X € R™*¢ can be decomposed into its singular value decomposition, because any
linear transformation can be decomposed into a rotation (multiplication by V), followed
by a scaling (multiplication by X), followed again by a rotation (multiplication by U).

This decomposition simplifies analysis of the properties of a matrix. For example, the
number of non-zero singular values constitutes the rank of X. To see why, assume o4 = 0,
and 041 > 0, meaning X has rank d — 1. Take any vector w € R%, and consider Xw.
We can write this product as UEXV'w = UXW for w = V'w. The product Xw sets the
last dimension of W to zero, effectively removing that dimension and so projecting w into a
lower-dimensional (d — 1) space. Then it rotates that projected vector afterwards, using U,
but cannot undo that projection into a lower-dimensional space. Therefore, Xw can only
product ¥ = Xw that lie in a d — 1-dimensional plane, rotated in R4, This decomposition,
then, can help us understand the space of possible predictions for linear regression Xw.

Now we can discuss the least-squares solution, in terms of the singular value decompo-
sition of X. Notice that

X'X=VvZ'U'UZV' =Vx2V'

because U is orthonormal and so U' U = I the identity matrix (I is a diagonal matrix with
ones on the diagonal). The inverse of XX exists if X is full rank, i.e., 34 has no zeros on
the diagonal, because (X'X)™" = VX ?V". The resulting solution for w looks like?
T
J

d
u
w=(X'X)"'X'y=vET'U'y=>" R (6.4)
j=1

where U = [uy,...,u,] € R™" is the orthonormal matrix composed of the left singular
vectors, Ug = [uy,...,uy] € R™*?is the first d left singular vectors, and V = [vy,...,v4] €
R4 is the orthonormal matrix composed of the right singular vectors.

The solution in Equation (6.5) makes it clear why the linear regression solution can be
sensitive to perturbations. For small singular values, 0]71 is large and amplifies any changes
in y. For example, for slightly different noise component ¢; for the ith sample, the solution

vector w could be very different. A common strategy to deal with this instability is to drop

2 An orthonormal matrix U is square matrix that satisfies U' U =I and UU' =1
3The last step in the below equation, writing the matrix product as a sum, is not immediately obvious.
As an exercise, see if you can derive this last equality.
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or truncate small singular values. This is a form of regularization, which we discuss in the
next section.

Remark: In the general case, where X is not full rank, we can still obtain a least-squares
solution to X'Xw = X'y. Now, there are potentially infinitely many solutions. The
common choice is to select the minimum variance solution, which corresponds to dropping
the components (singular vectors) for the zero singular values:

rank of X .. T
J
w = —— V. .
E = A7 (6.5)

Example 16: [Nearly linear dependent]| Let’s look at a simple example of why X € R7x<d
might have small singular values. First, assume d = 2 and xzo = x1, i.e., that the second
features is a copy of the first and simply redundant. Then X = U3,V is the thin SVD
of X, where Uj only has the first two columns of the full SVD. We can write this thin SVD
because X = UyXEyVT = UXV', where the zero singular values zero out the remaining
columns of U.

The SVD of just the first column x; € R™*! is straightforward: x; = ujoiv;, where
w = x1/||x1]|, o1 = ||x1|| and v; = 1. The SVD of X = [x; Xg| is therefore, for any n-
dimensional unit vector us that is orthogonal to uy, and right singular vectors v, vy € R2,

2 0 0.5 0.5
X=[u ulXv; VQ]T =[u; ug] [ gl 0] l —0.5 0.5

] :ulal[l.() 10]

where we extended v to two-dimensions (since d = 2), and defined v to be orthogonal
to that vector, and had to rescale o7 to maintain unit singular vectors. So because xo is
dependent on x;, the rank does not increase when we add it as a column and the singular
value o9 = 0.

If instead xo = x7 + ¢ for a small noise vector € € R™, then instead we would find that o9
would no longer be zero, but would be very close to zero, because u; and the first singular
value o1 would largely be able to recreate xs. O

6.5.2 Regularization

So far, we have discussed linear regression in terms of maximum likelihood. But, as before,
we can also propose a MAP objective. Instead of specifying no prior over w, we can select
a prior to help regularize overfitting to the observed data. We will discuss two common
priors (regularizers): the Gaussian prior (/3 norm) and the Laplace prior (¢; norm), shown
in Figure 6.5.

Taking the log of the zero-mean Gaussian prior, N'(0, A1), we get

-
W W

A1

A
—Inp(w) = In(2x| A7) + In(27) — dIn(\) + §WTW.
because |A7'I| = A~? where |A| is the determinant of the matrix A. As before, we can
drop the first constant which does not affect the selection of w.
Now we can combine the negative log-likelihood and the negative log prior. Then ig-
noring constants, we can add up the negative log-likelihood and negative log to the prior
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—Laplace(0,1)
——MNormal(0,1)

Figure 6.5: A comparison between Gaussian and Laplace priors. Both prefers values to be
near zero, but the Laplace prior more strongly prefers the values to equal zero.

to get
1 & d T
argmin — In(p(y|X,w)) — In p(w) = argmin 252 Z Yi — Z w;zij |+ 5WTW
w w g =1 =0
L d o2 T
= argmin ; — wizii | +——w w.
gw 1:21 Yi ]ZO YESH] 9

Therefore if we assume that the weights have a zero-mean Gaussian prior A/(0, A\~ 1o?I),
then we get the following ridge regression problem:

c(w) = (Xw — y)T(Xw -y)+ Aw'w > ||WH% =w'w

where )\ is a user-selected parameter that is called the regularization parameter. The idea
is to penalize weight coeflicients that are too large; the larger the A, the more large weights
are penalized. Correspondingly, larger A corresponds to a smaller covariance in the prior,
pushing the weights to stay near zero. The MAP estimate, therefore, has to balance between
this prior on the weights, and fitting the observed data.

If we solve this equation in a similar manner as before, we obtain

Wiar = (XX 4+ M) 1 X Ty,

This has the nice effect of shifting the squared singular values in 23 by A, removing stability
issues with dividing by small singular values, as long as A is itself large enough.
If we choose a Laplace distribution, we get an ¢; penalized objective

c(w) = (Xw —y)" (Xw —y) + Al w|:

which is often called the Lasso. This objective can be obtained similarly to the ¢» regularized
objective, but instead using a Laplace distribution with parameter A\ for the prior. As with
the ¢5 regularizer for ridge regression, this regularizer penalizes large values in w. However,
it also produces more sparse solutions, where entries in w are zero. This preference can
be seen in Figure 6.5, where the Laplace distribution is more concentrated around zero. In
practice, however, this preference is even stronger than implied by the distribution, due to
how the spherical least-squares loss and the #; regularizer interact.
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Forcing entries in w to zero has the effect of feature selection, because zeroing entries
in w is equivalent to removing the corresponding feature. Consider the dot product each
time a prediction is made,

d
XTW = ijwj = Z :L’jwj.
j=0 Jrw;i#0

This is equivalent to simply dropping entries in x and w where w; = 0.

For the Lasso, we no longer have a closed-form solution. We do not have a closed form
solution, because we cannot solve for w in closed-form that provides a stationary point.
Instead, we use gradient descent to compute a solution to w. The ¢; regularizer, however,
is non-differentiable at 0. Understanding how to optimize this objective requires a bit more
optimization background, so we provide this algorithm in the next chapter, in Algorithm 4.

6.5.3 Expectation and variance for the regularized solution

A natural question to ask is how this regularization parameter can be selected, and the
impact on the final solution vector. The selection of this regularization parameter leads
to a bias-variance trade-off. To understand this trade-off, we need to understand what it
means for the solution to be biased, and how to characterize the variance of the solution,
across possible datasets.

Let us begin with understanding the bias and variance of the non-regularized solu-
tion, presuming that the distributional assumptions behind linear regression are true. This
means that there exists a true parameter w such that for each of the data points Y; =
Z;l:o w;jX;j + €;, where the ¢; are i.i.d. random variables drawn according to N(0,0?).
We can characterize the solution vector (estimator) wyy, as a random variable, where the
randomness is across possible datasets that could have been observed. In this sense, we
are considering the dataset D to be a random variable, and the solution wy, (D) from that
dataset as a function of this random variable.

Let us now look at the expected value (with respect to training data set D) for the
weight vector wy,, with € = (e1,¢2,...,6p):

E[wa(D)] = E {(XTX)l X" (Xw + s)]
—E {(XTX)l (XTX)w} +E [(XTX)I XTE]
—E[w] +E [(XTX>_1 XT} E [e]

where the third equality follows from the fact that the noise terms € are independent of the
features and the last equality because w is a constant vector (non-random) and E[e] = 0.
An estimator whose expected value is the true value of the parameter is called an unbiased
estimator. The covariance matrix for the optimal set of parameters can be expressed as

Covlwy (D)] = E [(wa(D) - w) (W (D) - w) ']
= E [wyi. (D)W (D) — we”
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Taking? X' = (X"X) X7, we have wy.(D) = w + X'e, so
.
Coviwy, (D) =E [(w + XTs) (w + XTE) } —ww'
=ww' +E [stsTXTT} —ww'

because E [X'ew'] = E[X'|E[e]w’ = 0. Now because the noise terms are independent
of the inputs, i.e., E [ee"|X] = E [ee]| = oI, we can use the law of total probability (also
called the tower rule), to get

E|[X'ee X'T| =E[E [X'ee X'[X]]
—E |X'E [ee”[X] X']
= o’E [X'X'T].

Thus, we have
Covlwa(D)] = 0?E [(X"X) ']

It can be shown that estimator wyy, (D) = X'y is the one with the smallest variance among
all unbiased estimators (Gauss-Markov theorem).

Unfortunately, however, as discussed above, the matrix X'X = VXV can be poorly
conditioned, with some zero or near-zero singular values. Consequently, this covariance ma-
trix can be poorly conditioned, with high magnitude co-variance values. This implies that,
across datasets, the solution wy,, (D) can vary widely. This type of behavior is suggestive
of overfitting, and is not desirable. If our solution could be very different across several
different random subsets of data, we cannot be confident in any one of these solutions.

The regularized solution, on the other hand, is much less likely to have high covariance,
but will no longer be unbiased. Let wy,p(D) be the MAP estimate for the ¢ regularized
problem with some A > 0. Using a similar analysis to above, the expected value of wy,p(D)
is

E[wyar(D)] = E [(XTX +AT) X (Xw + e)}

E {(XTX A1) (XTX)w]
#+ w.

As XA — 0, the MAP solution becomes closer and closer to being unbiased. The covariance
is
Covlwiap(D)] = 0B [(X"X + AD) ']

This covariance is much less susceptible to ill-conditioned X "X, because as discussed above,
the shift by A improves the condition. Consequently, we expect wyap to have lower variance
across different datasets that could have been observed. This correspondingly implies that
we are less likely to overfit to anyone dataset. Notice that as A — oo, the variance decreases
to zero, but the bias increases to infinity. As depicted in Figure 6.6, there is an optimal
choice of A that minimizes this bias-variance trade-off—if we could find it.

4This matrix is called the pseudo-inverse of X. The idea of a pseudo-inverse generalizes the concept of
inverses to non-invertible matrices, including rectangular matrices. It is a useful concept, but not one we
will need to use again and so is not explained in-depth here.
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Figure 6.6: The bias-variance trade-off. Image obtained from: http://scott.fortmann-roe.
com/docs/BiasVariance.html

Exercise: Derive the covariance formula for wy,p(D).

The bias-variance trade-off comes in many forms. One such trade-off is in the selection of
our function class. If we select a simple function class, the class is likely not large enough—
not powerful enough—to represent the true function. This introduces some bias, but likely
also has lower variance, because that simpler function class is less likely to overfit to any
one dataset. If this class is too simple, we might say that our function is underparametrized
and is underfitting. On the other hand, if we select a more powerful function class, that
does contain the true function, we may not have any bias but could have high variance due
to the ability to find a function in your large class that overfits a given dataset. In this
setting, we might say the function is over-parametrized, and though we have the ability to
learn a highly accurate function, it will be difficult to actually find that function amongst
this larger class. Instead, one is likely to select a model that overfits to the given data, and
does not generalize to new data (i.e., performs poorly on new data).

Finding the balance between bias and variance, and between underfitting and overfitting,
is a core problem in machine learning. We discuss ways to theoretically and empirically
investigate this trade-off, in Chapter 10.

Remark: Above we assumed that the true model was linear, and so the only bias
introduced was from the regularization. This assumed that the hypothesis space of linear
functions was sufficiently powerful. In reality, when using linear regression with regular-
ization, we are introducing bias both from selecting a simpler function class and from the
regularization. If a powerful basis is used to first transform the data, to provide nonlin-
ear functions even though the solution uses linear regression, then it is feasible that this
function class is sufficiently powerful, and the bias is mostly due to regularization.
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